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The theory of tomographical imaging with limited-angutar
input is discussed, from which two reconstruction algorithms are
derived. The existence of missing information due to incompiete
angular coverage is demonstrated, and an iteration algorithm to
recover this information from a priori knowledge on the finite
extent of the object developed. Smoothing algorithms to stabilize
reconstructions in the presence of noise are given. The effects
of digitization and finite truncation of the reconstruction region
in numerical computation are also analysed. It is shown that the
limited-angle problem is governed by a set of eigenvalues whose
spectrum is determined by the imaging angle and the finite extent
of the object. The distortion on a point source caused by the
missing information is calculated; from the results some pro-
perties of the iteration scheme, such as spatial uniformity, are

derived.
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I. INTRODUCTION

In radiology and nuclear medicine imaging, information on
the density distribution of an object is usually inferred from
the radiation transmitted through or emitted from the object.
Such methods of medical imaging, known respectively as transmis-
sion and emission tomography, usually involve collecting the
radiation events while viewing the object from a continuous range
of angles, or series of disérete angles, and then reconstructing
the object distribution from the data. Object distributions can
be two-dimensional, such as in ring positron cameras [1] and x-ray
scanning (parallel beam or fan beam geometry) [2,3], as shown in
Figure 1, or three-dimensional as in planar positron cameras [4]
and pinhole imaging devices [5], as shown in Figure 2. Similar
techniques have also been empiloyed in other non-medical imaging
situations, such as electron microscopy, radicastronomy, etc. In
this paper we investigate the relationship between the angular
range of the input data and the possibility of reconstructing the
object distribution completely. We shall be dealing with objects
of finite extent, digitized on a finite-spacing grid. This is a
necessary requirement due to the finite resolution of all detec-
tors and to the limitations of the computational techniques.

In Section 11 the basic imaging problem is formulated as a
convolution equation, together with two algorithms to tackle it:

one involving complete deconvolution and the other partial



deconvolution. The existence of a region of undetermined Fourier
components in Timited-angle imaging is shown in Section III. Sec-
tion IV deals with the effects of digitization and finite trunca-
tion, whereas Section V treats the stability problem in the two
reconstruction methods. In Section VI the possibility of recov-
ering the undetermined Fourier components is discussed and two
iteration schemes to achieve this purpose are proposed. In Sec-
tion VII the effects of the undetermined Fourier components on a
point source are evaluated; from these effects further properties
of the iteration schemes are derived. In Section VIII the two
reconstruction algorithms are compared, and some concluding

remarks are given in Section IX.

IT. BASIC EQUATION AND METHODS OF SOLVING

We shall take the line at the center of the measured data
cone to be the z-axis. Due to the symmetry of the x and y axes
in most cases, we shall write out only the x-axis explicitly and
suppress the y coordinates in most of the mathematical treatment
and figures in order to facilitate presentation.

In emission imaging, each point source in an object distri-
bution generates a flux of gamma rays at each location in space.
The flux pattern at r due to a point source at r' can be vepre-
sented by constructing a scalar field ¢ (r,r') from the recorded
events emitted by the point source in the Timit where the number

of such events becomes large. Hereafter we shall refer to ¢, as



the point response function. Point response functions can be con-
structed in a variety of ways. The simplest way is to count the
number of gamma vrays that traverse a small test area element ori-
ented at a particular angle at each location in space, as shown
in Figure 3. This approach yields the conventional back projec-
tion tomograms. To generalize, one can weight each emission event
as a function of the angle between the event and a fixed direction.
Angular weighting can improve the signal-to-noise ratio in the
data in those imaging devices where the error distribution in the
data has an angular dependence. For example, noise in a planar
positron camera due to Compton scattering concentrates in the small
angle region [6], and therefore could be reduced by any angular
weighting which emphasizes the large angle events.

The resultant effect at r due to all the point sources in
the object distribution p(r') is a scalar field ¢(r) which is the
linear superimposition of the flux generated by all the point

sources within p(r'), i.e.

olr) = fo(r')oo(r.r'jd3r (1)

In this equation it is assumed that the same angular weighting
has been employed in constructing ¢ and oo

In the case of transmission imaging, each volume element
attenuates the intensity of the x-ray beams exponentially, and

the total attenuation is the product of the individual attenuations.



Since takiﬁg the Togarithmic function converts a product into a
sum, Fquation (1) also holds in the case of transmission imaging
1f the quantities ¢ and ¢, are constructed from the logarithmic
function of the attenuation in the appropriate directions. Equa-
tion (1) is therefore the basic equation relating the data to the
object distribution in imaging.

As it stands, Equation (1) is difficult to solve in general.
However, if the kernel is space invariant, i.e. ¢ (r,r'}) = @O(rmwﬁ)s

then Equation (1) becomes

o{r) = [olr Yo (r-r')ddr' - (2)

Solving for o(r) is simplified considerably since various methods
of solving integral equations with a kernel of such form have been
developed [7]. In complete-angle imaging ¢, is always space-
invariant. 1In the limited-angle case, ¢, can be made space-
invariant by using only those events falling within a universal
cone, which is the intersection of the detection cones subtended
by all the point sources in the object. Further discussion on the
construction of g and 1ts space-invariance can be found in
[8].

The solution of the two- or three-dimensional integral
Equation (2) as a matrix equation on a digital computer requires
a large amount of computatién and core memory. A more practical

approach is to Fourier transform the equation to frequency space.



As shown in [7], the transformed equation is diagonal, so the

integral equation reduces to an algebraic equation,

o(k) = o (K)R(k) (3a)

where

0ok} = [o,(r)exp(Znik-r)ddr
#(k) = folr)exp(2nik-r)d3r
R(k) = [o(r)exp(2mik-r)d3r

The solution is given by

o{r) = [R{k)exp(-2wik-r)d3k (3b)
where
fi%;- if o,(k) # 0
R(K) = - (3c)

undetermined if o,(k) = 0
(since here Fquation (3a) becomes 0 = 0)

If we Fourier transform Equation (2) only in the x dimension,

we get the one-dimensional integral equation

9 (ksz) = [k, ,z-2")plkynz' Vdz' (4a)
where

Y (ky»z) = £Z¢O(x§z)exp(2ﬁikxx)dx



Q(kﬁag) = £m$(XQZ)éXp(2ﬁikXX}dX

plk,,2z) = £zp(x§z)exp(2wikxx)dx

and the solution is given by

o{x,2z) = £:p(kxgz)exp(@2wikxx)dkx {4b)
where
[Pgi*(kys2)p(k, ,2) dz
Jw."i ) & , ¥%e
plkyoz) = ] = i gi(ky,z) ——— (4c)
i

Here o4, g5 are the eigenvalues and eigenfunctions of the integral
operator (4a).

Equations (3) and (4) represent two methods of solving for
p(r). The former solves for the unknown R{ky,k,) in frequency
space and then inverse transforms in the kx and kz dimensions back
to object space, whereas the latter tackles the problem in the Ky
and z space followed by inverse transformation in the kX dimen-
sion. Thereafter in the paper we shall refer to these methods as
the deconvolution method [8,9], and the matrix method [10],
respectively, since the one-dimensional integral equation (4a)

becomes a matrix equation when solved on a digital computer.

I1I. THE OPTICAL TRANSFER FUNCTION AND THE UNDETERMINED
FREQUENCY COMPONENTS

In order to reconstruct the object uniquely using the



deconvolution method from Equation (3c), all the frequency compo-
nents of the optical transfer function @O(gj must be non-zero.

For the matrix method, the corresponding reguirement is that the
integral operator in (4a) does not have zero eigenvalues [11].
Neither of these two conditions holds when (i) the ranges of
integration involved cover all space, and (ii) the point response
function does not have a complete angular converage. To show
this, we first calculate the optical transfer function ¢,(k). Due
to a property of the data in transmission and emission imaging to
be shown later (Equation (5)), we make the following coordinate

transformation:
rix,z) > r{o,z)

where ¢ = tan“l(gﬁ

As mentioned in Section II, the general point response func-
tion at (x925 is defined as the number of events, emitted from the
point source, which pass through a Tine segment of unit length at
{x,z) oriented at a certain angle, perpendicular to the z-axis for
example, with each event weighted by a factor F(e) depending on
the angle 6 the event makes with the z-axis. F(e) is positive
inside the cone and zero outside: the case of F(e) = 1 inside the

cone corresponds to the conventional tomograms obtained from back-



projecting the events. For z # 0, consider a line segment dx
pointing along the x-axis centered at (0,2z) relative to the point

source (Fig. 4a)

- angle subtended by dx at origin 1
{052} = F(o) - I
. F(8) cos?e
T Z|
Thus
2
6,(0,2)|z| = Ll0)cos®e (5)

i)

Equation (5) shows that ¢,(e,2)|z| is a function of o only. This

expression is valid also at z = 0. The optical transfer function

is
2ok, ok, ) = [Tdz fwdx¢o(xgz}exp(2wi(kxx + kyz)) = (6)

Performing this integral (Appendix A) we get

8(z) feOF(e)de ifk =0
kil 60 X

1 ) ,
W F(Se")COS @i if kX £ 0

_ =k
where tane; = »§§

Figure 4b shows schematically the shape of the two-dimensional
optical transfer function. Three-dimensional point response func-

tions and optical transfer functions are treated in Appendix B,



and the result (B.3) for the pyramidal ¢O(§) is illustrated in
Figure 5. Figures 4b and 5b show that if ¢, does not have a
complete angular coverage there are regions in frequency space
where @O(g) is zero, and thus R(k) cannot be recovered by the
deconvolution method from Equation (3). The necessary and suf-
ficient conditions for complete angular coverage for a three-
dimensional point response function ¢  have been given in [121.
Hereafter we shall refer té'the region where @O(gj # 0 as the
"allowed cone" and that where ¢ (k) = 0 as the "missing cone",
respectively.

The existence of the missing cone can also be shown in a
simple way using the projection theorem [13], which states that
the one-dimensional Fourier transform of the projection P(r,e) of
a two-dimensional function gives the components of the two-
dimensional Fourier transform of the function on a line at angle
(6 + w/2). Now it can be shown easily from Equation (5) that the
total integrated intensity of ¢O(xgz) on any line which intercepts
the detection cone completely is a constant independent of the
position of the line. This means that the projection P(r,e) of
¢0o(x,2) is a constant function in r for e (= tan"!(x/z)) is the
range (0,,m-6,), and therefore its Fourier transform is a delta
function at the origin.

In the case of the matrix method, we claim that the integral

operator (4a) does have zero as its eigenvalue for every value of

10



Ky if ¢, does not possess complete angular coverage. First we
show that {exp(-2nik,z)} is the set of eigenfunctions of the inte-
gral operator. Setting p(ky,z} = exp(-2wik,z), the integral

becomes

i:tfo(»kxazmz ' )@Xp(“‘Z'ﬁ‘ikZza )dzg

= exp(wzﬂ%kzz)®o(kxgkz)

Thus {exp{-2mik,z)} is the set of eigenfunctions of the integral
operator with eigenvalues @o{kxgkz)g However, we have already
shown that ¢, has zero components if it does not possess complete
angular coverage. Since the eigenfunctions form a complete set,

the general solution of the integral equation (4a) is
pkysz) = [ Clk, ok, )exp(-2nik,z)dk,

where the coefficients C(k,.k,) are given by

["Plkgoz)exp(2nikz)dz  olky.k,)
2o (kyokz ) 2o lkysky) 2

Clk,ok,) = it 0, (kysky) # 0

undetermined, if @O(kxgkz) = ()

The solution p{x,z) in object space is obtained by inverse trans-
forming p(k,.z) in the k, dimension, and it can be seen that the
result is identical to that obtained by the deconvolution method,

as expected.
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It follows that p(x,z) cannot be determined uniquely using
either the deconvolution method or the matrix method represented by
Equations (3) and (4), respectively, if the point response func-
tion does not have a complete angular coverage and no further

information is available.

IV. EFFECTS OF DIGITIZATION AND FINITE TRUNCATION

In practical imaging situations, due to limitation in
detector resolution and digital computation, object distributions
are always analysed on a finite grid of points with finite spac-

ings AXx, Az. Besides limiting the frequency range to

1 1
Ikl < 7ax > kgl < 737

digitization also changes the shape of the point response function.
As mentioned in Section III, the vanishing of o,(k,,k;) in the
missing cone is due to the property of ¢O(xgz) as expressed in
Equation (5). However, if ¢,(x,z) is digitized, Equation (5) is
no longer applicable, and hence part or all of the zero values in
the missing cone become non-zero, és shown in the detailed analy-
sis in Appendix C. The result of this analysis shows that the
undetermined components of R(k) are eliminated if sampled in the

x and z dimensions. For the matrix method, the eigenfunctions
with zero as eigenvalue are also eliminated in a corresponding

manner. In other words, digitization makes it possible to

12



reconstruct object distributions completely.

Another Timitation imposed by digital computation is that
reconstructions can only be performed in a finite region of space
of finite dimension Ly x L,. As a consequence, the point response
function becomes space variant and so the integral in Egquation
(2) is no longer a convolution, thus introducing some error into
the solutions obtained by the deconvolution or matrix methods.
However, if the half-angle of the detection cone and the dimen-
sions Ly,L, are such that the detection cones generated at every
point in the object do not intersect the vertical edges of the
reconstruction region, as illustrated in Figure (6), the space in-
variance of ¢, in the x dimension is preserved. That means the
convolution relation in the x dimension is still valid, and so
the matrix method solution remains exact.

Besides the discreteness in resolution, the data in some
imaging devices are taken in a number of discrete angles. It is
well known that an object cannot be reconstructed from a finite
number of projections. However, if a priori information is evoked,
only a negligible amount of information is lost if the angular
sampiing is dense enough. This point will be elaborated in more

detail in Section VI.

V. INSTABILITIES

As shown in Section II, each Fourier component o(k,.k,) of

13



the data ¢(x,z) is multiplied by the factor 1/¢,(k,,k,) in decon-
volution; in the matrix method, each eigenfunction component is

also amplified by the factor 1/(eigenvalue). As a result, insta-
bilities arise where the ¢ (ky,k,)}'s or the eigenvalues are small.

One way to minimize these stabilities is to impose on the

soTution the smoothness condition adopted by Phillips [14]:

J192p(r)12d3r = minimum (7)

For deconvolution, the net effect of this smoothing procedure is
to introduce an additional term in the denominator of Equation

(3c) as SHQWﬂ in [8]:

R(k) = Mk’%zﬂ)qu (8)

oo(k) + 'Y“‘g‘:ﬁa“’“

where y(>0) is an adjustable parameter which depends on the noise
level. This additional term is negligible at low frequencies
compared to ¢,(k), but increases rapidly in magnitude with fre-
quency as both k" increases and |o,(k)| decreases. Thus the
information at Tow frequencies is suppressed.

The additional term also plays a significant role in the
missing-cone region. As shown in the previous section, digitiza-
tion makes the Fourier components ¢,(ky,k;) in the missing-cone
region non-zero. These components, however, are very small in

magnitude, and thus error amplification in the deconvolution
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Fquation (3c) is especially serious in this region. Even in the
ideal case that the data ¢(x,z) contains no error, the error
produced in ®(kx§kz) due to the space variance of the point
response function arising from space truncation alone will render
the information in the missing-cone region unreliable. The effect
of the additional term in Equation (8) is to set R(k) close to
zero in the missing-cone region. This means that for the decon-
volution method, the information in the missing-cone region is
always unavailable. The Tack of information on the missing-cone
components introduces non-uniqueness into the solution. Setting
these missing-cone components to zero gives a minimum norm solu-
tion, a conseqguence of Parseval's theorem, but it is clearly not
the correct solution.

The effect of imposing the smoothness condition (7) on the
matrix method solution is very similar to that on the deconvolu-
tion. For every value of kx? instead of solving the i1l-conditioned

matrix equation
Y = AX

which is the digital version of Equation {4a), another matrix

equation with a modified kernel [15] is solved:

C .
Vo= A+ yBL(20k,)2D 12K (9)

Here Az is the grid spacing in the z direction, I is the identity

15



matrix, G is the left generalized inverse of the matrix A, and

the matrix C is given by

-2 i=j
cij=q 1 1=

0 otherwise

VI. EFFECTS OF THE KNOWLEDGE ON THE FINITE EXTENT OF THE OBJECT
(p(x,2) # 0 for x; < X < X9, 27 < Z < Zp)

As stated in Section IV, taking data in a finite number of
discrete angles gives rise to non-unique solutions. However, by
making use of the fact that the object is finite in extent, this
non-uniqueness can be removed. Klug and Crowther [16] have shown
that for a 2-dimensional object of diameter D which is digitized
in pixels of dimension dxd, m projections at equally spaced angles
from 0 to » contain almost all the information required to recon-

struct the object uniquely, where m is given by

7D

M= 24
The undetermined Fourier components in the missing cone can
be recovered by making use of the knowledge on the finite extent
of the object, a consequence of two theorems: (1) the Fourier
transform of a finite object is an entire function, and (2) an’

entire function can be continued throughout the whole complex

plane from a knowledge of the function on any finite continuous
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Tine segment [17]. As a result, R(kyx,kz) can be continued
throughout the k-space from a knowledge of the function within
the cone. The procedure cannot be used when ¢ = 0, since then
the only region in which R(k) is known is the line k, = 0 which
therefore contains no interior points.

The above analysis shows that all the information on any
density distribution of finite extent is contained in its Fourier
components within any open cone in frequency space with its apex
at the origin. This conclusion is in agreement with the fact
that such a distribution is uniquely determined by any infinite
set of projections [18,19].

In the case of the matrix method, it is convenient to con-
sider first the finiteness of the object in the z direction, which
is built into the method, followed by that in the x direction.

As shown in Appendix D , the integral operator (4a) in the matrix
method becomes positive definite when the range of integration in

z is finite, and by [11], the eigenfunctions associated with it
form a complete set in the class of functions square integrable

in (z1.25), and thus unique solutions exist for the integral
operator. This argument breaks down if kytane, = 0. Therefore,
there is no unique solution for p(kxgz) it ky =0 or 6, = G. For
the general case 6, > 0, the only missing information is p{0,z)

for each zy < z < z, (see Fig. (7)). These undetermined components

at ky = 0 on each z-plane can be filled in from values at k, # 0

17



on the same z-plane by virtue of the fact that p(ky,z) is entire
in k, for all zy < z < z, (since p(x,z) is non-zero only for
Xp < X < Xp). If 8, = 0, the components at k, # 0 are
not known themselves, not to mention the continuation to k, = O.
To implement the continuation process, the most direct ap-
proach would be to calculate the successive derivatives of R(k)
at some point kg in the allowed cone to form a Taylor series ex-
pansion of R(k) which converges everywhere. In practice such a
series has to be truncated, so the error for the values of the
series calculated at a region far away from kg would be large.
In addition, it is difficult to determine accurately the deriva-
tives of a function numerically.
Another method for the continuation of an analytic function
is by means of a prolate spheroidal function e%pansion [20,21].
The function R(k) to be continued is expanded in a series of

prolate spheroidal function vi(k)

R(K) = Jay¥i(k)
1

the coefficients aj being determined from the known values of
R(k) in the allowed cone.

A Fourier series expansion can also be used in extending the
function to fill in the missing cone. This method was employed
by Harris [17] to continue a one-dimensional spectrum, and by

Inouye [22] to reconstruct a two-dimensional image.
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A practical way to recover the missing-cone components is
the iteration scheme given below 52316 The object is Fourier
transformed back and forth between the object space and the
Fourier space, being corrected in each step by the known Fourier
components in the allowed cone and the known finite extent of
the object. An alternate approach is to use the Radon transform
to manipulate the object back and forth between the projection
space and the object space, the constraints being the known pro-
jections in the Vimited angular vrange and the known finite extent
of the object [247. These two iteration methods are shown sche-
matically in Figures 8 and 9.

The convergence property of the Fourier transform iteration
scheme can be understood in terms of two operators A and B operat-
ing on any Fourier transformable function f defined in frequency

space. A and B are defined as follows:

AF = Xpf

Foix, Ff

i

Bf 8

where F and F~! represent the Fourier transformation and its in-
verse. Xp,Xp are, respectively, the characteristic functions of

the allowed cone, R,, in Fourier space and of the object region,

as

Ry, in object space (Fig. 10), and are defined as:



1 E€Ra
XA(K) ;{

0 k¢Ry

1 % e R
Xp() =4 T "

L0 x ¢ Rb

With these operators, it can be shown that the truncation error
Etiﬁjigj in terminating the iteration after n steps is given by:

£ (0 = Jag(0 - ap) M) 0<aj<1  — (10)

i

where A4,¥4 are the eigenvalues and eigenfunctions of the operator
BA, and a; are the expansion coefficients of R(k) in terms of vy's.
The derivation of Equation (1@)'was given in [25]. Equation (10)
shows that the major source of error comes from those eigenfunc-
tions associated with the small eigenvalues for which {1 - a3)"
goes to zero only very slowly with n.

The eigenvalues of BA for a square-shaped object boundary
have been calculated for various half-angies of the allowed cone.
The results are shown in Figure 11. It can be seen that every
spectrum can be roughly divided into two regions, one in which the
eigenvalues are close to unity and the other with eigenvalues
close to zero. As iterations proceed, those components of the
truncation error Et(ﬂ)Q&) corresponding to the larger eigenvalues
(~1) will go to zero very rapidly, while those corresponding to

the smaller eigenvalues (~0) will approach zero only very slowly.
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As a result, Et(“j(ij is expected to level off after an initial
relatively rapid decrease with iterations. To show this effect
the Fourier transform iteration algorithm was applied to restore
the missing-cone components of a 2-D phantom. The reconstruction
area is a 128 x 32 lattice, with equal lattice spacings in the
x(1) and z(k) directions. The phantom has a square boundary with
perpendicular diagonals which are both 11 Tattice spacings long
in the x and z directions, respectively. The allowed cone has a
half-angle of tan™!(0.5) and is centered around the ky-axis. The
Fourier components of the phantom outside the allowed cone were
first set to zero, and then the iteration scheme was employed to
recover them. Figure 12 shows the root mean square error o of
the reconstruction as a function of iterations; here o is defined

as

i!%<(reconstruction (i,k) = phantom (i,k))?
o= number of pixels

The results demonstrate the levelling off of Et(n) after an initial
rapid decrease with iterations.

Figure 11 also shows that as the opening angle of the allowed
cone decreases the region of small eigenvalues grows, hence the
truncation error is expected to increase with decrease in the
allowed-cone angle. This behavior is clearly shown in Figure 13,

where the root mean square error o of the reconstructed image
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after 20 iterations is plotted as a function of the half-angle

of the allowed cone for the 2-D phantom mentioned above.

VII. EFFECTS OF THE MISSING CONE ON A POINT SOURCE

The effect of setting the missing-cone components to zero
on a point source has been mentioned in previous papers [25,26].
In Reference 24 this effect was analysed in more detail in two
dimensions. Besides casting light on the nature of the distortion
caused by the missing cone, results of the analysis are also use-
ful in understanding the spatial uniformity of reconstructed
objects.

Assume a point source is located at the origin x = z = 0.
With the Fourier componpents in the missing cone set to zero, the

distorted point source p'(x,z) is given by [24]

1
n?(tane z? -

for (x,z) # (0,0) (11)

pa (XQZ) =

X2 )
tané,
Equation (11) shows that the distortion is positive in the
cones |x| < tane_|z|, and negative in the cones [x| > tane,|z].
In an extended object., most of the negative distortion will be
swamped by the positive densities at other positions in the ob-
ject. Therefore, the use of a positivity constraint in iterations,
i.e. resetting all negative densities to zero, improves COﬂve?Q

gence significantly for point sources but not for extended objects,

as reported in [25].
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The positive distortion in the region |x| < tane,|z| rises
to high p@éit%ve values in the immediate vicinity of the Tines
x = + tano,yz; the negative distortion in the region |x| > tane,|z|
also becomes large near the lines. These high positive and nega-
tive values give rise to what appear to be four ridges originating
from the point source and decaying with distance: two positive
ones and two negative ones bordering the lines x = + tano,z. These
distortions are singular and discontinuous in crossing the boundary
between the positive and negative regions. These singularities
and discontinuities are smeared out in digital Fourier trans-
formation and averaged out to small finite values.

The distortion of a point source caused by the mﬁssiﬂg%cene
components is shown graphically in Figure 14. The half-angle of
the allowed cone is tan~1(0.5). Figure 14A shows the positive
density distribution of the distorted point source, and Figure 14B
shows the negative density distribution. The presence of the two
positive and the two negative ridges originating from the point
source, and the elongation of the point source along the z-axis
are evident. The other smaller ridges not originating from the
point source are due to the sharp cut-off of the Fourier area.

The positive distortion in the cones |x| < tane,|z| makes
the point source appear elongated in the z direction. When the
half-angle 6, of the allowed cone is small, elongation along the

z-axis (x = 0) is especially serious, as implied in Equation (11),
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and contains most of the distortion energy of the distorted point
source. If part or all of this elongation is repeatedly reset to
zero during iterations, convergnece will be very rapid. Thus, at
small allowed-cone angles, convergence of the iteration scheme is
primarily determined by whether or not the point source is located
in a position where part or all of its elongation extends outside
the object boundary and thus is repeatedly reset to zero during
iterations.

The above discussion can be made clear by considering the
situation in Figure 15. The 32 x 32 array is the reconstruction
area, while the 11 x 11 square area in the middle of the array
represents the finite extent of an object: anything outside the
square is reset to zero during iterations. As far as the conver-
gence of the iterations is concerned, the pixel A(16,17) in
Figure 15 is the worst location within the square boundary because
a point source at this position has the largest fraction of its
ridges inside the square boundary, whereas pixel B(16,22), similar
to the other pixels on the top and bottom edges, represents the
best Tocation since half of each ridge is outside the boundary for
a point source located at B. For pixel C(21,17) and the other
pixles on the left and right edges, half of each ridge is also
outside the boundary, but all of the elonoated portion is stilil
inside; thus a point source at C is not expected to do much better

than at A. The above statements have been verified experimentally
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[24]. The vresults show that at small angles the elongated
portion aiéng the z-axis is the main factor determining the con-
vergence of the iterations, and therefore the densities in all
the pixels are reconstructed to the same fidelity, except for the
ones on the very top and bottom edges.

As the angle of the allowed cone increases, the distortion
amplitude becomes more spread out in the ridges and on the x-axis.
As a result, more pixeis near the boundary will be reconstructed
better than the interior pixels. However, since the convergence
of the iteration scheme improves vapidly with the increase in the
allowed-cone angle, the reconstruction error would be small every-
where within the object boundary and thus could not cause any

serious problem in spatial uniformity.

VIII. COMPARISOM RETWEEN DECONVOLUTION + ITERATIONS AND MATRIX
INVERSION

In principle, both the combined scheme of deconvolution +
Fourier iterations and the matrix inversion method are capable of
performing limited-angle reconstructions. In practical applications,
however, the two algorithms show rather different characteristics.
In the case of no noise or very low noise levels in the data, the
matrix method has advantages over the deconvolution + fterations
algorithm. The reasons are two-fold. First, the information on

the finite extent of the object is built into the matrix method,
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so no iterations are necessary. Second, in digital computations
digitizaiiéﬂ removes the non-uniqueness due to limited-angle
information, thus reconstruction is no longer a missing-cone
problem and complete reconstruction is possible in one step with
either the deconvolution or the matrix method, as discussed in
Section IV. On the other hand, the finite truncation of the recon-
struction area makes the point response function space-variant in
the z dimension. This introduces an error into the deconvolution
algorithm but not into the matrix inversion, thereby rendering
the missing-cone components in the deconvolution algorithm unus-
able (see Sec. V).

The matrix method is very ill-conditioned, i.e. unstable with
respect to noise propagation; on the other hand, the deconvolution
+ iterations approach is quite stable [25]. Therefore, when
applied to practical data that contain significant amounts of
noise, the deconvolution + iterations scheme gives better recon-
structions.

The instabilities of the matrix method are especially serious
at small values of |k,| [25]. One way to stabilize the matrix
method is to discard the small |k,| components of the computation
that contain most of the error, and, by making use of the finite
extent of the object in the x dimension, fill in those components
using the ones with higher |k, | values through the iteration scheme

shown in Figure 16 [25]. 1In this iteration scheme there is an

26



arbitrariness in the choice of the value of k, such that a compo-
nent at ky is discarded if [k,| < ko. After the reconstructions

from the matrix inversion are improved by this iteration procedure
with an optimum choice of k,, our experience has shown that their
quality is about the same as that from the combined deconvolution

+ Fourier iterations scheme.

IX. CONCLUDING REMARKS

Because of its stability, deconvolution followed by Fourier
transform iterations is a practical way for limited-angle recon-
struction in general imaging situations where noise is not negli-
gible. The ultimate accuracy that can be attained is Timited by
the small eigenvalues of the BA operator. Since the eigenvalue
spectrum is determined by the size of the angle of the allowed
cone and the finite extent of the object, the fidelity of recon-
structions can only be improved if we have more a priori knowledge
on the object other than its finite extent and location. For ex-
ample, if it is known that an object has circular symmetry, one
projection will suffice to reconstruct it completely. However,
besides the constraint of positivity which has been shown to be
of little help in reconstructing extended objects (see Sec. VII),
no other constraints of exact nature are available for general
objects.

Entropy maximization, a constraint of probabilistic nature,
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has been extensively used in image reconstruction [27,28]. e
have investigated the possibility of using entropy maximization
for Timited-angle object reconstruction. Our work [29] shows
that the entropy difference between the object reconstructed
using only the allowed cone information as the initial step and
the final object decreases rapidly at first as we perform the
reconstruction iterations, and thereafter very slowly. From this
and more general arguments given in [29] we conclude that the
entropy maximization will not produce better reconstructions than
the methods discussed here. Furthermore, the amount of computer
time required to perform the entropy maximization is considerably

higher.
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APPENDIX A

EVALUATION OF THE TWO-DIMENSIONAL OPTICAL TRANSFER FUNCTION

0o (Kyk,) = i:dz {:dx by (x52) exp(2mi(kyx + kyz))
= £:dz £:de 90(0,2) exp(2riz(k tane + k,))|z|sec?o
= igzde E%$l=£:dz exp(2niz(k tane + k,))
Now
izexp(zﬁiz(kxtaﬂe + k,)dz = s(k,tane + k,) e (A1)
therefore
2o kyokz) = £ZZ F.:) §(kytang + k;)de

s{k,) g
- £92 F(o)de if kx = )
B e (. 2)
F(o4)cos?0y4
e if k, #0
'ﬁ]kxl
h Sk
where tanei = = E;
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APPENDIX B

EVALUATION OF THE THREE-DIMENSIONAL OPTICAL TRANSFER FUNCTION

In three dimensions, Equation (5) takes the form

do(8,2)]2]|?% = H(s/z) (B.1)

where s = (x,y), and the angular function H is positive inside
the data cone and zero outside. Defining t = s/z, w = (kxgky)s

and performing the Fourier transformation, we get

o, (W.ky) = [dz [[d?s00(s,2) exp(2ni(w * 5 + k,2))

i

[Ir(t)s(w » t + k,)d%t

The vector t = (t;,ty) can be chosen so that t; Ties along w,
giving w « t + k, = |w[t; + k,. Then we get
s(k,) [f H(t)d2t ifw=20
0, (W,ky) = —— (B.2)
[ H(-kz/|w], tp)dt, if w#0

In the particular case where ¢, is in the form of a square

pyramid, i.e.,
¢o(x.¥,z) > 0 whenever 0 < |x| < |ztane|

and 0 < |y| < |ztano]
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application of (B.2) shows that

oo (kyokysky) » 0 if (Jky| + 1ky]) > |k, |/tano,
when |k,|, |k, > 0 o
ol l_ Y — (8.3)
or (]kx] + {kyl} > [k, |/tano,
when l%xi = 0 or tky{ = 0

= {) otherwise
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APPENDIX C
EFFECTS OF SAMPLING ¢,(x,z) IN THE x AND z DIMENSIONS

Let the object distribution p(r) be sampled in the z dimen-
sion by the sampling function:
Spz(z) = f §(z - naz)
=0
The pgint response Functﬁen'¢o(xgz) can thus be sampled in the
same way. By the convolution theorem, the optical transfer func-

tion o,(%)(ky,k,) of the sampled ¢,(xs2) is given by

06 (2 (Kyoky) = 0 (kyoky) * Sk, (kz) (c.1)

where @o(kxgkz) is the original optional transfer function,
Sékz(kz) is the Fourier transform of s,,(z), and * denotes con-
volution. Now Reference [30] shows that SAkZ(kZ) is also a

sampling function in the k, dimension given by

©

Saip (k) = ok, D 6(ky - naky), aky = g —— (C.2)

Tl==00

From Equations (C.1) and {C.2) we see that @O(Z)(kxgkz) is the
superimposition of repetitions of the original optical transfer
function in the k, dimension at intervals of Ak,. Thus
@O(Z)(kxskz) is non-zero in the region 2|ky|tane, > 4k,; as for
the region Zkkxltaﬂeo < bk,, the number of zero Fourier components

is reduced by a factor of 2.
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If sampling of ¢,(x,z) is done in the x dimension instead,
similar considerations show that the corresponding optical trans-

fer function ¢ (X)(k ,k,) will be non-zero everywhere.
0 X*"Z



APPENDIX D

PROOF FOR THE POSITIVE DEFINITENESS OF THE MATRIX INTEGRAL
OPERATOR FOR OBJECTS FINITE IN z EXTENT

Recall that the kernel of the integral operator is in the

form:
0
yo(kxgzmz’) = feo Eégl«exp(Zwikxtaﬁe(zszg))d@
. “Yo

For any function f(z) piece-wise continuous and spatially bounded

i zy <2 <2y,

fzzdz‘fzgdz}g(kxszwz’)f(z)f*(z‘)

i

fzgdz'fzzdzfzgde E%Qlwexp(2wikxtane(zaz‘))F(Z)F*(z“)
%y 2y “Vo

ki

%;izz F(e)!fzf exp((2nik tane)z)f(z)dz|2ds  ————— (D.1)

Since F(o) > 0 for all -6, < 6 < 8,, the vanishing of Expression
(D.1) would require that

I(kxtane) = fz2 exp((ZWikxtane)z)f(z)dz = 0
Z

{
for all -[k,tane,| < k tane < [k tane |
Now the integral I(kxtaﬁe) is an entire function [31]. If it is
zZero within'the interval Iﬂkxﬁaﬁeogkxtaneojg it must be zero
everywhere. Thus f(z) must be zero everywhere. This argument

proves that the integral operator
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9(2) = [*y, (kgoz-2' (2" )dz!

is positive definite.
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FIGURE CAPTIONS

Fig. 1. Two-dimensional imaging devices.

Fig. 2. Three-dimensional imaging devices.

Fig. 3. Point response function defined by an area element.
Fig. 4. A two-dimensional point response function @O(zj and its
optical transfer function o (k).

Fig. 5. A pyramidal three-dimensional point response function
dolr) and its optical transfer function o, (k).
Fig. 6. Space invariance of the point response function in the x
dimension. If the edges of the detection cones generated at every
point in the object do not intersect the vertical edges of the
reconstruction region, the point response function is space invari-
ant in the x dimension,

Fig. 7. Undeterminacy in the matrix method.

Fig. 8. Fourier transform iteration scheme for filling in missing-
cone Fourier components.

Fig. 9. Radon transform iteration scheme for filling in missing
projections.

Fig., 10. Schematic representations of the allowed cone and the
object extent.

Fig. 11. Eigenvalues of BA for a 2-D problem for various half-
angles of the allowed cone.

Fig. 12. Root mean square error of the reconstructed image of a

2-D phantom as a function of the number of iterations. The half-

angle of the allowed cone is tan™1(0.5).
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Fig. 13. Root mean square error of the reconstructed image of a
2-D phantom after 20 iterations as a function of the half-angle
of the allowed cone.

Fig. 14. Positive and negative density distributions of a point
source whose missing-cone Fourier components have been set to
zero. The half-angle of the allowed cone is tan™'(0.5).

Fig. 15. A 11 x 11 square boundary representing the finite extent
of an object within a 32 x 32 reconstruction area.

Fig. 16. Iteration scheme to stabilize the matrix method.
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